Relationship Between Augmented Eccentric connectivity index and Some Other Graph Invariants
نویسندگان
چکیده
منابع مشابه
Relationship between augmented eccentric connectivity index and some other graph invariants
The augmented eccentric connectivity index of a graph which is a generalization of eccentric connectivity index is defined as the summation of the quotients of the product of adjacent vertex degrees and eccentricity of the concerned vertex of a graph. In this paper we established some relationships between augmented eccentric connectivity index and several other graph invariants like number of ...
متن کاملAugmented Eccentric Connectivity Index of Some Thorn Graph
The augmented eccentric connectivity index is defined as the summation of the quotients of the product of adjacent vertex degrees and eccentricity of the concerned vertex of a graph which is a generalization of eccentric connectivity index. In this paper we present explicit expressions for the values of augmented eccentric connectivity indices of some particular thorn graphs like thorn path, th...
متن کاملeccentric connectivity index and eccentric distance sum of some graph operations
let $g=(v,e)$ be a connected graph. the eccentric connectivity index of $g$, $xi^{c}(g)$, is defined as $xi^{c}(g)=sum_{vin v(g)}deg(v)ec(v)$, where $deg(v)$ is the degree of a vertex $v$ and $ec(v)$ is its eccentricity. the eccentric distance sum of $g$ is defined as $xi^{d}(g)=sum_{vin v(g)}ec(v)d(v)$, where $d(v)=sum_{uin v(g)}d_{g}(u,v)$ and $d_{g}(u,v)$ is the distance between $u$ and $v$ ...
متن کاملEccentric Connectivity Index of Some Dendrimer Graphs
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Mathematical Sciences
سال: 2013
ISSN: 2307-454X
DOI: 10.14419/ijams.v1i2.701